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The perturbed ladder operator method-analytical 
determination of the generalised central field energies and 
wave functions 

N Bessis, G Bessis, B Dakhel and G Hadinger 
Laboratoire de Spectroscopie et de Luminescence, Universit6 Claude Bernard-Lyon I, 
43, Bd du 11 Novembre 1918,69621 Villeurbanne, France 

Received 26 July 1977 

Abstract. In order to extend the original range of applicability of the ladder operator 
formalism, a novel method of resolution of perturbed equations is presented. This method, 
capable of handling any order of the perturbation, allows an easy determination of 
‘perturbed ladder operators’ and hence gives analytical expressions for the perturbed 
eigenvalues and eigenfunctions in terms of the quantum numbers of the unperturbed 
factorisable problem. The case of a wave equation with a Coulomb potential (factorisable 
type F) perturbed by an additive Hamiltonian expanded in a positive power series of r, i.e. 
V(r )  = - [ I ( /  + l)/r2] - (2q/r)+ bo+ blr +. . . + bsrs, is worked out in detail. Application to 
the screened (static or cosine) Coulombic problem is given as an illustrative example. 

1. Introduction 

The Schrodinger-Infeld-Hull factorisation method (Schrodinger 1940, Infeld and 
Hull 1951) is known to be an elegant method of solving fundamental equations of 
mathematical physics which admit solutions of hypergeometric form (Duff 1949, 
Hadinger et a1 1974). The concept of ‘ladder operators’ (for instance, the .I* operators 
of angular momentum theory) is now a familiar one, and there is interest in the 
principle and computational point of view of the method. When a given equation is 
factorisable the complete set of normalised eigenfunctions can be generated by 
repeated application of the ladder operators to the ‘key function’, which is the solution 
of a first-order differential equation. Moreover, the eigenvalues are readily obtained 
from knowledge of the factorisation type to which the equation belongs. In fact, the 
original range of applicability of the method can be extended within the perturbation 
scheme, in order to treat problems which are beyond its prime and original scope. 

One of these possible extensions, i.e. the ‘perturbed factorisation’ technique was 
recognised early (Schrodinger 1940, Infeld and Hull 195 1, Infeld 1942). Summarising 
‘gross0 modo’ the principle of this technique: one tries to build up perturbed ladder 
operators associated with successive orders of the perturbation. Once the perturbed 
ladder operator is found, the usual factorisation scheme applies. Hence, one could 
obtain analytical expressions for both the perturbed eigenvalues and eigenfunctions to 
the required accuracy. 

At this early stage, it should be emphasised that the straightforward extension of 
the ‘unperturbed scheme’ (i.e. trying to determine the perturbed ladder right from the 
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beginning) unfortunately leads to rather intricated calculations. This is probably why 
Infeld and Hull (1951) have limited their pioneering use of this procedure to second- 
order Stark effect calculations and this is why we have to work out a novel procedure 
capable of handling any order of perturbation and possessing a wider range of 
applicability . 

After an essential review of the basic theory of the ‘exact’ ladder operator in 0 2, 
our new perturbed factorisation scheme is presented in 8 3 and particular attention is 
paid to the fundamental radial factorisation types E and F. For the Coulombic case 
(F), detailed computations are carried out in 0 4. Finally, eigen-energies and eigen- 
functions of the screened Coulombic problem are given as an illustrative application. 

2. Exact factorisation 

In order to set up the notation, it is necessary first to briefly recall how the ladder 
operator works when it is applied to solve a so called factorisable equation. 

Many problems of fundamental interest in quantum mechanics lead to equations 
of the Sturm-Liouville type. Without restricting the generality of the problem, by an 
appropriate transformation of variable and function, these equations can be reduced 
to the standard form (see appendix 1): 

associated with the boundary conditions (XI d x 6 x 2 )  

J x  1 

where m = mo, mo+ 1, m o + 2 .  . . is assumed to take successive discrete values label- 
ling the eigenfunctions. 

Such an equation (1) is factorisable when it can be replaced by each of the 
following two differential equations: 

where j is the quantum number associated with the eigenvalue hi, L(m) is a function 
which does not depend on x and H; are ladder operators 

d 
dx H: = K ( x ,  m ) T - - .  (4) 

Then, the eigenfunctions Yjm are solutions of the following pair of difference- 
differential equations (see Infeld and Hull 1951, Hadinger et a1 1974): 

That is to say, the ladder operators H k  generate the eigenfunctions step by step, 
downward or upward, and allow the determination of any Ujm(x) function from the 
knowledge of the ‘key function’ Yjj which is the solution of a first-order differential 
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equation. Furthermore one very interesting property is that if one starts from a 
normalised key function Yrij, then the ladder operation ( 5 )  generates normalised 
eigenfunctions Yjm. 

When L ( m )  is an increasing function of m (class 1 problems), the necessary 
condition for the existence of quadratically integrable solutions, i.e. the quantification 
condition, is given by 

j -m=u=integer==O.  (6 )  
The eigenvalues are 

Aj = L( j  + 1). 

The ‘key function’ is the solution of the first-order differential equation 

(7) 

When L ( m )  is a decreasing function of m (class 2 problems) the quantisation 
condition is m - j = U = integer 3 0. The eigenvalues are Ai = L ( j )  and the eigen- 
functions are obtained in an analogous way to class 1 problems. 

From the comparison of equations (1) and (3), it is easily shown that the necessary 
and sufficient condition to be satisfied by K(x ,  m) and L(m j allowing the factorisation 
of equation (1) is: 

d 
dx 

( ~ ( x ,  m + l ) ) ’ + - K ( x , m + l ) + L ( m + l ) = - U ( x ,  m )  

( ~ ( x ,  m))*--K(x ,  m ) + L ( m ) = - U ( x ,  m).  
(9) 

d 
dx 

As is well known (Infeld and Hull 1951), there are six fundamental factorisable 
cases which are summarised in table 1. However, when direct factorisation is not 
possible solely because of the inadequate m-dependence of the potential U(x, m) 
under consideration, one can resort to ‘artificial’ or ‘embedded’ factorisation, i.e. one 
can consider U(x, m) as ‘embedded’ in a new potential function u(x, m, p )  which 
belongs to table 1 (if one considers p as a supplementary parameter) such that 
u(x ,  m, m)= V(x, m). Then, equation (1) is factorised using u(x ,  m, p) ,  and class 1 (or 
class 2) eigenvalues .Aj = L ( j  + 1, p )  (or A, =L(j ,  p ) )  are determined as well as the 
eigenfunctions Yjm(x,p), both depending on the parameter p. At the end of the 
ladder procedure, one sets p = m and merely obtains the required solutions. 

Nevertheless, as will be shown in the present paper, when neither direct nor 
embedded factorisation applies, it is still possible to widen out the narrow limits of the 
six Infeld-Hull cases of factorisability by mapping the perturbation scheme onto the 
ladder operator formalism. 

3. The perturbed ladder operator method 

3.1. Method 

Now let us consider the second-order differential equation (1) involving a potential 
function %(x ,  m) which does not belong to any of the six factorisable types of table 1 
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Table 1. Infeld-Hull factorisation types. 

ad 
sin ax 

m ( m  + l ) + d z + d ( 2 m  + l ) c o s  ax ) ma cot ax+- a 2 m 2  A 

B -d2 exp(2 ax)+ad(2m + 1) exp (ax) -ma + d exp(ax) -fl2rn2 

m 
-4bm C 

D -(bx + ~ d ) ~ + b ( 2 m  + 1)  b x + d  -2bm 

m(m + 1) 
X 2  

-____- b2xZ+b(2m+1)  -+ bx 
X 

E - 

F - 

a' 
.- m(m+1)-2aqcotax  
sin2 ax 

m ( m + l )  2 s  
x 2  x 

9 
ma cot ax +- 

m 

m q  -+- 
x m  

a 2 m 2 - T  4* 
m 

and let us assume that this potential function, as well as the associated factorisation 
functions X ( x ,  m )  and 2 ( m )  to be found, can be expanded in a perturbation series 
with a parameter r ] :  

%(x, m)= ~ ' " ( x ,  m)+r]U(1'(x,m)+r]2U(2)(X,  m ) + . .  . 
~ ( x ,  m)=K'' ' (x,  m ) + r ] ~ ( ~ ) ( x ,  m)+r] 2 K (2' (x, m ) + .  . . 
~(m>=L'"(m)+r]L' ' ' (m)+ r ]  2 L (2' ( m ) + .  . . 

(10) 

where K"'(x, m )  and L"'(m) are the factorisation functions allowing an exact 
factorisation of the wave equation (1) with U'"(x, m ) .  

Then one has to satisfy the factorisability condition (9) up to a given power of the 
parameter r]. The required K(N',  L(N' and U(N' are found to be solutions of the 
following equations: 

These equations (11) will be solved recursively, i.e. when considering the deter- 
mination of K"' and U'N', it is assumed that all the K'"' for v = 1, 2 . . . N - 1 have 
already been found. 

As we pointed out before, our procedure at this stage will differ from the 
Infeld-Hull one: we determine first U"'(X, m )  instead of K"'(x, m ) .  In order to 
eliminate K"'(x, m )  from (1 l), it is best to consider the two equivalent combinations 

w=l 
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Integrating the first equation of (12) by setting 

d 
dx 

U"'(& m )  = - W"'(X, m )  

where k(m) is an integration constant which, of course, could depend on m. 

tion: 
Then, from (12) and (14), one obtains the following difference-differential equa- 

1 d  
- - ( ~ " ' ( x ,  m ) + ~ " ' ( x ,  m - 1 )) + ~ " ' ( x ,  m )( ~ " ' ( x ,  m) - ~ " ' ( x ,  m - 1 )) 
2 dx 

N - 1  

+2K"'(x, m)k(m)+L(N' (m)+  K'"'(x, m ) K ( N - Y ) ( ~ ,  m ) =  0. (15) 
u = l  

The finite-difference aspect of (15) determines the m-dependence of the functions 
W"'(x, m )  and L"'(m) while its differential aspect determines the x-dependence of 
W"'(X, m ) .  Once the W"'(x, m )  is found, the perturbing potential U ( N ' ( ~ ,  m) and 
the associated ladder function K"'(x, m) are given by (13) and (14) respectively. 
Then the perturbed problem (up to the Nth order) may be handled in the same way as 
the exact factorisable (unperturbed) problems. 

3.2. m -dependence of the factorisation functions and potential 

The kind of m-dependence of the perturbing U(N', K(N' and L(N' functions follows 
(see equations (12) or (15)) froni the m-dependence of the zeroth-order ladder 
function K"'(x, m )  which is (table 1): 

K'O'(x, m) = f ( x ) m  + g ( x ) ,  

K"'(x, m )  = f ( x ) m  + (4 /m) ,  

for types A to D 

for types E and F. 

(16) 

(17) 

or 

By analogy with the exact factorisation scheme, a finite expansion of powers of m 
is assumed for U'''(x, m), and hence for W"'(x, m) .  Nevertheless, when substituting 
both expressions of W"' and K"' (equations (16) or (17)) into (15), it is easily shown 
that, for all factorisation types (A-F), W"'(x, m )  involves only positive powers of m. 
Step by step it could be shown that this result holds for any order. 

In order to investigate thoroughly the m-dependence of W"'(X, m ) ,  one has to 
distinguish between the K"'(x, m) which are linear functions in m (equation (16)) and 
the K'O'(x, m) which are non-linear in m (equation (17)). In the present paper, we 
shall focus our attention on this last case. 

For general types E and F(4 # 0) and for any order N of the perturbation, the 
following m-parity relationships hold: K"'(x, - m )  = -K"'(x, m ) ;  L"'(-m) = 
L"'(m) and U"'(x, m )  is found to be a series of m(m + 1). These are indeed 
properties already verified by K'''(X, m), L"'(m) and U'O'(x, m) (see table 1). 
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Therefore, an adequate expansion of the W(N' and U(N' functions is as follows: 

From (18) one gets 

where (3 are binomial coefficients. 
From (14), one obtains the perturbing ladder function 

S N  

u = l  u=o 2 u + l  U =o 
(21) 

v + u  SN S,-, 

K"'(x, m)=  1 m2"-' 1 ( )y!N_1(x)+ k,m2"-' 

where k, are constants (with respect to x and m). 
An adequate expansion of the factorisation function is 

,=-l  

Anticipating the results demonstrated in the next section, and also for convenience, 
the effective bounds of summations in (22) and in the last term of (21) have been 
written out. 

3.3. Perturbing potentials and ladders (E) and (F) 

3.3.1. First order of perturbation (N = 1 ) .  Using (20), (22), (17) and (15), that is to say 
putting the m-dependence of W(l' into the factorisability condition (15), one obtains: 

= - p p  - 2qk21-  2kf'f(x) 

where (see table 1) 

for type E 
f(x)={;;tax for type F. 

The general solution of this triangular linear differential system in the y?'(x) is easily 
found. Setting 
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one gets ( 1  c v 

y : ” ( x ) =  C ~ ” F U ( x ) - F u ( x )  -{pi” +2qk$1 + 2k:)f(x)  

SI): 
dx 

Fu ( x  1 
V + U  v + u  s,-0 

u = l  

For any choice of the truncation bound S1, the # ( x )  can be calculated from (26),  
step by step, downwards for v =SI,  SI- 1 . . . 1 .  The ladder function K‘”(x, m )  
involving the free constants CL’), k;’ and p ( l )  , is then obtained from (21)  and the 
perturbing potential U‘”(x, m )  from (19)  where (see equation (23)  for v = 0) 

Let us point out that, for type F, U(’)  is merely a series of positive and negative powers 
of x while for type E, U(1) is a rather intricate function of x (see equations (25)  and 

Finally, the vanishing conditions, when v = - 1 ,  -2 ,  . . . or v = S + 1 ,  S + 2,  . . . , of 
(26)).  

the binomial coefficients involved in (23)  lead to the following identities: 

p-1= -2qko 
(1) - (1) k-1 - k-2 = . . , =O; kg21 = k$22 = . . . = 0 

psc1 - ps+* = * . . = 0. (1) - (1) pc; = pl:‘ =. . . = 0; 

This is the justification of the values of the summation bounds in (21)  and (22).  

3.3.2. Nth order of the perturbation. When considering the determination of the 
Nth-order functions, it is assumed that those of the lower orders have already been 
found. Then in equation ( 1 5 )  one can write 

where the o : ” ( x )  are completely known. 
Consequently, the Nth-order differential system which determines the rL”(x) is 

merely obtained from the first-order equation (23)  by the formal change pL1’+ 
p ~ ” + w ~ ” ( x ) ,  i.e. one gets yLN)(x) by use of expression (26), and subtracting the 
following term from this: 

Finally, the K ( N )  and U ( N )  functions can be calculated, to any order N, without 
significant difficulty (equations (21)  and (19))  and the general type E (or type F) 
factorising (up to the Nth order) potential %(x ,  m )  is obtained (equation (10)).  Its 
general expression involves free constants CL’, kl“ and pL’(v = 1 ,  N ;  v = 1, S,) to be 
adjusted in order to match with a given physical potential function in equation ( 1 ) .  

The same procedure applies to determine types A-D perturbed potentials. It has 
been found that, in these cases, K(”(x, m )  does not have a definite parity in m and 
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that an adequate expansion of U(N) ,  and hence of W ( N ) ,  involves powers of m(m + 1) 
as well as odd powers of (2m + 1). These cases will be investigated in a further paper 
together with some illustrative applications. 

4. Generalised central field energies and wavefunctions 

4.1. Determination of the factorisation and ladder functions 

In view of many possible applications and as an illustrative example, it is aorthwhile 
to work out in detail a special type F case corresponding to the particular choice of the 
free constants in (26), i.e. CL!‘) = kl“ = 0 (v = 1, N).  In that case the expression of the 
yiN)(x) reduces to 

From this expression it can be inferred recursively that the yiN) are polynomials of x 
of degree (SN + 1 - U )  whose coefficients depend on the free constants pj”’ (v = 1, 
N - 1;  i = 1, &). It should be noted that, once the first-order truncation bound S1 has 
been arbitrarily chosen, the choice (i.e. the minimal values) of S2, S3 . . . SN is not free. 
Indeed, when calculating y i N ) ,  the polynomial flt”(x) in (31) is already fixed as data 
following from the results of the preceding orders. Subsequently, the highest power of 
x on the right-hand side of (31) is fixed and associated to S N  = S ,  + SN-v + 1 for v = 1, 
N - 1. Hence the value of SN depends recursively on SI,  and one finds 

SN = NS1+ N - 1. (32) 

Finally, after calculating the set of the yl“)(x) polynomials, the factorising perturbed 
potential is obtained: 

m ( m + l )  24 
Q(x, m )  = - --+ 1 q ” ~ ( ” ) ( x , m )  

X 2  x v = l  

with (33) 

i.e. the perturbing part of %(x, m )  is merely a polynomial in x of degree SN, the 
coefficients of which depend on m(m + 1) and p:’. 

The associated ladder function is 

m q  X(x, m ) = - + - + K N ( x ,  m )  
x m  

where (cf equation (21) with k, = 0) (34) 
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The associated energy function is (cf equation (22) with &1 = -2qko = 0): 

We have thus manufactured the necessary mathematical tools to factorise any 
wave equation (1) involving a Coulomb potential (type F) with an additive pertur- 
bative Hamiltonian which is (or can be expanded in) a positive power series of x. 

Indeed, let us consider a given equation 

with 

m ( m + l )  2q --+blx+b2x2+. . .+bsgSN.  
X 

V x ) = -  x 2  (37) 

The values of q and bi are, of course, specific to the physical problem under consi- 
deration. 

In order to identify Y(x) with %(x ,  m) (equation (33)), it is convenient to write 

m(m+1)  2q --+ 1 V(”)(X) 
X 2  x ”‘I 

V(X) = - 

with 

From successive identifications of V(”)  with U‘”’, the /3?) may be expressed in terms of 
bi and p = m(m + 1) so consequently analytical expressions of the factorisation 
function 2 ( m  ; bi, p )  and the ladder function X(x, m ; bi, p )  are found depending on bi 
and p. Hence, using the factorisation scheme (with p considered as an artificial 
parameter) one obtainsanalytical expressions of the eigenvalues (class 1): 

Z9j = %?) + SI1) +. . . + €9;” = 2 ( j +  1; bi, p ) -  bo. (39) 

The ‘key perturbed’ function is the solution of the first-order differential equation 

(40) 
d 

(K“’(X, 1) + KN(X, f 1 ; bi, p ) - z ) q j j  = 0 

and one gets the following expression of the ‘key perturbed eigenfunction’ (m = j )  

qjj = qj;) exp (1 KN(x,j+l;bi ,F)dX) (41) 

where the artificial parameter p has to be set to its actual value p = j ( j  + 1) and 

qj;) = N$i+l exp[qxl(j + 111 (42) 
is the zero-order normalised key function, the solution of equation ( 5 )  for type F 
(class 1): 
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Let us now consider the determination of the second-order energy with S 2 =  
2S1 + 1 = 5 (equation (32)). In order to obtain the yS’, one has first to calculate the 
increments ai2’ arising from the first-order contribution (K”))‘ (see equations (29) 
and (30)). Since, from equation (21) 

~ ‘ ” ( x , m ) =  y\”(x)m +2Y$1)(x)m3, (5 2) 
where 7:’ are already known functions of x ,  bi and CL, after a few elementary 
manipulations, one arrives at: 

a2(52’ = a(2’ = 0 
4 

RP)=~(CLb2-b1)2X3+~(CLb2-bl)b2X4+~b2X 1 2 5  , 

After calculating the yL2’(x) (see appendix 2), in the same way as the first-order 
calculation, one obtains the second-order energy 
gip' + g(1’ + g(2) 

n n 

-Qb3n2[35n4+ 5n2(5 -6A)- 3A (2-A)]-&b:n2(7n4+5n2-3A ‘) 

-4b4n4[63n4+ 35n2(3 - 2A)+ 12-50A + 15A2] 

- & b5n4[ 23 1 n + 105 n4(7 - 3A ) + 2 1 n 2( 14 - 25A + 5 A  ’) 

- 5 A  (12 - 8A + A  ’)] -&blbzn4[45n4 -i 7n2(9 - 2A)- 5 A  (2 + 3A)] 

- A b h 6 [  143n4 + 15n2(23 - 6A ) + 7(4 - 18A - 3A ’)I (54) 
with A = 1(1+ 1). 

One can also calculate the third-order (N = 3) energy corresponding to the same 
truncation of the perturbing potential (up to x’). Taking SI = 1, SZ = 3 and SJ = 5 ,  one 
finds that the third-order energy is given by expression (54) with the last term replaced 
by the two following ones: 

-&blb3n4[77n6+ 15n4(13 - 3A)+7n2(4 - 9A -3A’)- 5A(2 -A)] 

-~b:n4(33n6+75n4-7n2AZ - 10A3). ( 5 5 )  
Let us point out that expression (54) generalises previous results of Iafrate and 
Mendelsohn (1969, 1970, 1973). Indeed, when re-arranging their expression (cf 
equation (28) of Iafrate and Mendelsohn 1970) in terms of A = 1(1+ 1) one finds again 
expression (54) cut off from the four last terms, i.e. their result is found to correspond, 
with our perturbed scheme, to a second-order calculation with SI = 1 -* Sz  = 3. 

Let us now obtain the wavefunctions. As pointed out before, it is sufficient to view 
the perturbative ladder function K as a polynomial in x. For our illustrative example 
S1 = 2, and for the first order 

K~ = q ~ ( ~ ) = + q { [ b l - b Z p ) m  +2b2m3]x+b2mx2). (56) 
When using the general results of the preceding section for m = 1, j = n 1, p = A = 
1(1+ l), x = Zr and Ti,,, = Z-1’2rRn, and on retaining the linear term in q, one finds 
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for instance, the following first-order perturbed wavefunctions: 

RI:‘ = [ I  +i(b, + 2 b z ) ~ ~ r * + a b z ~ ~ r ~ ] ~ I ~ )  

I?$: = [l +~(b1+6b2)Z2rz+3bzZ3r3]R$~  (57) 
Rf? = [1+ ( ~ b l + 4 b z ) Z 2 r 2 + ~ b ~ Z 3 r 3 ] R $ ~ ’ + 3 3 ’ 2 [ ( b ~  +6b2)Zr+b2Z2r2]Rg 

where the R$) are the well known radial hydrogenic normalised functions. 
Expressions for y;?(x) and K”’, which are needed in order to determine the 

second-order perturbed wavefunctions ( N  = 2, SI = 2 + SZ = 5 ) ,  are given in 
appendix 2. 

5. Analytical determination of the screened Coulombic energies and wavefunctions 

Vsscp(r) = - (Z e-po‘)/r 

or the exponential cosine screened Coulomb potential 

VEcsp(r) = - (2 e-ao‘/r) cos(a0r) 

Let us focus our attention on the determination of the bound state energies of the 
screened Kepler problem. Its importance has been widely recognised (see for instance 
Rogers et a f  1970, Bessis er a f  1975, McEnnan er a f  1976 and the references given 
therein). It is known that the static screened Coulomb potential 

(58) 

(59) 
where a. is a screening parameter, occurs in several fields 0. physics (solid state 
physics, nuclear physics, statistical thermodynamics, etc). Instead of (58) or/and (59), 
it is convenient to use one unique expression 

Vsc(r) = - (Z eVaor/r) cos(EaOr) (60) 
which for e = 0 and E = 1 reduces to Vsscp and VECS~ respectively. 

screened potentials writes (in au) 
After setting R,l(r) = &l(r)/r, the radial Schrodinger equation involving the 

Let us consider the screened potentials VsC as a Coulomb potential with an 
additive perturbative potential. Setting x = Zr, a = ao/Z and introducing the Taylor 
expansion of this perturbative potential near r = OT, the equation (61) is reduced to 
the standard form (36) with 

q = - l  2 
Z 

8=7E,; 

2 d” e-OX c o s ( ~ a x ) - l  
u !  dx” 

b, = -[ -( X 

or 
( - * ) U + ’  It(u+l)l  u + l  
(u+1)! j = o  2j 

b,=2- (-l)( )€?  

t One could also choose, without introducing any difficulty, another origin of the Taylor expansion; for 
instance, the Bohr radius (see Bessis et a1 1975). 
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Particularly 
bo = -2a 
b l =  a2(1  --E 2 ) 

b - L 3  2 - - 3 a  ( 1 - 3 ~  2 ) 

b 3 = & 4 ( l - 6 6 2 + ~ 4 )  
b -  4 - -6Oa  L s  (1 - 10E2 + 5 ~ ~ )  

6 5 = ~ ( ~ ~ ( 1 - 1 5 6 ~ + 1 5 6 ~ - ~ ~ ) ,  

When substituting these expressions for bi into expression (54) (S1 = 2 -* S2 = 5 )  
one getst for the static case (E = 0): 

E,,( = y( z2 - ; ; z + 2 a - - ( 3 n 2 - A ) a 2 + - n 2 ( 5 n 2 - 3 A  1 1 1 + l ) a 3  
2 6 

n‘ 
96 

--[77n4+ 5n2(1 1 -6A)-3A(2 + 5A)]a4 

n4 5 

160 

n4 
5760 

+-[171n4+ 35n2(7 - 2A)-5A ( l o +  9A2)+4]a 

[3091n6+ 15n4(509- 141A)+7n2(122-435A -45A2) -- 

- 5A (12 - 8A + A 2)]a6). (65) 

The third-order static energy (N = 3 with SI = 1 -* SJ = 5 )  is given by expression (65) 
when the last ( -a6)  term is replaced by the following: 

n4 
5760 

-- [6666n6+60n4(271 - 39A)+42n2(37- 80A - 35A2) 

-5A(102-53A +181A2)]a6. 

For the cosine case (E = 1) 

2 1 3 ; 3 24 
E,,( = - - T +  2a + -n 2(5n - 3A + 1)a3 +-n2[35n4 + 5n2(5  - 6A) - 3A (2 - A)]a4 

-&,n4[63n4+35n2(3-2A)+ 12-50A + 15A2]a5 

-&n6[143n4+15n2(23-6A)+7(4- 18A -3Az)]a6). (67) 

In this case, the third-order energy (Sg = 5 )  is given by the expression (67) cut off from 
the last (-a6) term. Since the main purpose of this paper is to present the method 
rather than to give extensive tables, only two illustrative test results, i.e. second-order 
perturbed energies corresponding to successive choices SI = 2 -* S2 = 5 and S1 = 3 + 
S2 = 7 are given in table 2 (E = 0) and table 3 (E = 1). 

Our results are in good agreement with the most accurate ones obtained elsewhere 
(Rogers et aI 1970, Lam et a1 1971, 1972, Bessis et a1 1975). 

t It should be noted that our result stands for a more general cosine potential V ~ a p =  
(-2 e-””‘/r) cos(abr) with ab # a0 by choosing c = ab/ao in (63). 
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6. Conclusion 

Following the original suggestions of Schrodinger, Infeld and Hull, we have enlarged 
the field of application of the factorisation method. Indeed, by mapping the pertur- 
bation scheme onto the ladder operator formalism ‘perturbed factorisation and ladder 
functions’ have been built up. Consequently, one is able to obtain, in a straightforward 
way, analytical expressions of eigenvalues and eigenfunctions. These expressions are 
given in terms of the quantum numbers of the properly chosen factorisable unpertur- 
bed problem. Since the perturbed ladders contain all the essential information, the 
perturbed eigenvalues are obtained without having to calculate explicitly either the 
excited unperturbed functions or any matrix element. One may add that the treatment 
of the Nth  order is not significantly more difficult than the first order. 

In this paper, special attention has been paid to type F factorisation and the 
generalised central field problem has been thoroughly investigated. Our calculations 
of the screened Coulombic eigen-energies, which have been chosen among other 
possible interesting applications, lead to results in good agreement with the most 
accurate ones. 

The remaining other types of factorisation are under study and will be presented in 
a further paper. 

Appendix 1 

Consider a one-dimensional differential equation of the Sturm-Liouville type 

It can be transformed into the standard form 

d2 
( -+U(x ,  dx m)+A)t,b(x)=O. (‘4.2) 

The transformation connecting equations (A. 1) and (A.2) is 

CL = (pP)1’44, dx = (p/P)”2 dy. (A.3) 
Indeed, the possibility of such a transformation implies that the functions P(y) and 
p(y) are never negative and p(y)/P(y) exists everywhere. 

Appendix 2. Second-order (N = 2, SZ = 5) perturbative potential and ladder 
functions 
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Y 1 = -R,(x)-&t - $2 + 4 P 3  - f P 4  + m x  - ($Pz - + P 3  + 3 P 4  -hP5>x2 
-4(AP3-&P‘%+%P5)x 3 - d 7 P 4 - ? i P 5 ) X 4 - & 5 X S  4 1  

where the shortened notation y, = yi2);  R, = ai2’ and P, = Pi? has been introduced. 
After substituting the expressions ( 5 3 )  of the PL2’ and identifying U(’)= oY.cz)= 

b3x3+b4x4+b5x5,  one gets: 

P s = - g ( 4 2 b s + 1 3 b ; )  

0 4  = - ~ b 4 - ~ ( 7 - 3 p ) b s - M b i b 2 - ~ ( 2 3  - 6 p ) b ;  

P 3  = - yb3 - y(3 - 2p)b4-?&(14 - 2 5 p  + 5p2)b5 -&b: -&(9-2p)bibz  

- & ( 4 - 1 8 p - 3 p 2 ) b ;  ( A 3  
P 2  = - : (5 -6p)b3-$(12  - 5Op + 15p2)b4 + &(I2 - 8p + p2)pb5 -&bf 

+&(lo+ 3p)pblbz 

PI = $(2 - p )pb3 + &p ’b:.  
Then from the second-order perturbative ladder function (see equation (34)): 
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